

KEY CONCEPTS

Note: It depends only on temperature and on nature of the liquid. It does NOT depend on the surface area

Raoult's Law. The equilibrium vapor pressure of a volatile component is linearly proportional to the mole fraction of that component in liquid phase.

For non-volatile solutes :	$P(solution) = x_{solvent} P^{o}$
	$(P^{o} - P)/P^{o} = x_{solute}$.
A more useful form is	$(P^{o} - P)/P = n/N$
where n = total number of moles of <i>all the free</i>	<i>solute species</i> in the solution <i>finally</i> (i.e. at equilibrium).

Three cases arise.

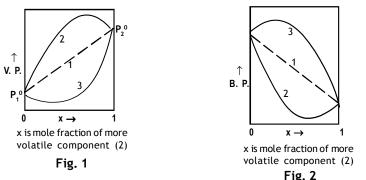
Non-electrolyte is dissolved e.g. glucose or urea. These molecules do not dissociate into ions. If 0.1 mol of urea is dissolved in 50 moles of water, then n/N = 0.1/50 simply.

Strong electrolyte is dissolved e.g. NaCl, $Ca(NO_3)_2$ etc. These dissociate nearly completely into ions. If 0.1 mol of NaCl is dissolved in 50 moles of water, then n/N = 0.2/50 since NaCl dissociates completely in 0.1 mol Na⁺ ions and 0.1 mol Cl⁻ ions. Similarly, for Ca(NO₃)₂, n/N = 0.3/50 if 0.1 mol of it dissociates completely into ions.

Weak electrolyte is dissolved e.g. HCOOH, CH_3NH_2 etc. In such cases, we should determine the *total* number of moles of all the solute species at equilibrium. e.g. if n_0 moles of formic acid considered non-volatile here) are dissolved in N moles of solvent then,

HCOOH \Leftrightarrow H⁺ + COOH $n_o(1-\alpha)$ $n_o\alpha$ $n_o\alpha$ Total number of moles at equilibrium = $n_o(1+\alpha)$. Hence, $n/N = n_o(1+\alpha)/N$.

Note : This factor, n (at equilibrium)/n(original) is referred to as van't Hoff factor.


Ideal Solutions. The solutions which obey Raoult's Law are called ideal solution. For ideality: (i) $\Delta H_{mix} = 0$, (ii) $\Delta V_{mix} = 0$ as well for liquid-liquid solutions.

Non ideal solution (Deviations From Raoult's Law)

Positive deviation. When the observed vapor pressure is more than that expected by Raoult's law.

This is observed when $\Delta H_{mix} > 0$ i.e. energy is absorbed on mixing. Usually obtained by mixing of polar liquids with non-polar ones. e.g. cyclohexane and ethanol.

Negative deviation. When the observed vapor pressure is *less than* that expected by Raoult's law. This is observed when $\Delta H_{mix} < 0$ i.e. energy is released on mixing. Attractive forces between unlike molecules are greater than the forces of attraction between like molecules. e.g. chloroform and acetone. (Curve 3 in Fig. 1 and 2).

BHOPAL Azeotropic Solutions. During distillation, the mole fraction of more volatile component in vapor state is higher than that in liquid state. This makes distillation possible. However, there exist some solutions for higher than that in liquid state. This makes distillation possible. However, there exist some solutions for particular compositions of which the mole fraction of components in liquis and vapor state is same. Thus, no advantage is derived by distilling such a mixture and it is termed as **azeotropic**. **Completely Immiscible Liquids :** When they are distilled, they distil in the ratio of their vapor pressure $W_B = P_B^\circ \cdot M_B$

at that temperature. e.g. When A and B are distilled wt ratio $\frac{W_B}{B}$ is given as

Completely Miscibile Liquids. They can be handled by Raoult's Law i.e.

$$y_i P = x_i P_i^o$$

where P = Total pressure of vapors in equilibrium with the liquid solution,

 P_i^{o} = vapor pressure of component *i* in pure state

 y_i = mole fraction of ith component in vapor state, x_i = mole fraction of ith component in liquid state This most fundamental expression may be arranged in many useful forms. e.g. for binary solutions :

KARIYA (S. R. K. Sir) PH: (0755)- 32 00 000,

$$P = x_1(P_1^0 - P_2^0) + P_2^0$$

1/P = 1/P_2^0 + v_1(1/P_1^0 - 1/P_2^0)

or $1/P = 1/P_2^0 + y_1(1/P_1^0 - 1/P_2^0)$ Note : Vapor pressure of an ideal solution is always between P_1^0 and P_2^0 (Curve1 in Fig. 1 and 2)

Bubble Point. When the first bubble of vapor appears in liquid solution.

Dew Point. When the first drop of liquid condenses from a mixture of vapors. OR when the last drop of liquid remains and rest of the liquid is completely vaporised.

Colligative Properties. The properties which depend only on the number of moles of solute (and not on their molecular weights or sizes) are referred to as colligative properties.

TEKO CLASSES, Director : SUHAG R. e.g. Lowring of vapor pressure, depression of freezing point, elevation of boiling point, osmotic pressure etc.

1. Relative lowering of vapour Pressure.
$$\frac{P^0 - P}{P^0} = \frac{n}{n+N} = \frac{w/m}{w/m + W/M} = x_{solute}$$

2. Elevation in Boiling Point, ΔT_{b} . For dilute solutions, $\Delta T_{b} = K_{b}m$ where *m* is molality of the solution (i.e. total number of moles of all the solute particles per kg of solvent). K_b is ebullioscopic or boiling point elevation constant which is given by

BHOPAL

$$K_{b} = \frac{R(T_{b}^{0})^{2}M_{solvent}}{1000\Delta H_{vap}}$$

 ΔH_{vap} is the enthalpy of vaporisation of solvent.

Depression in freezing Point (ΔT_f). For dilute solutions, $\Delta T_f = K_f m$

where,

 $K_{f} = \frac{R(T_{f}^{0})^{2}M_{solvent}}{1000\Delta H_{fusion}}$

Osmosis. Spontaneous flow of solvent molecules through a semipermeable membrane from a pure solvent to the solution (or from a dilute solution to a concentrated solution) is termed as osmosis.

Reverse Osmosis. If a pressure greater than the osmotic pressure is applied on the concentrated solution, the solvent starts to flow from concentrated solution to dilute solution (or pure solvent). This is reverse osmosis. One of its chief uses is desalination of sea water to get pure drinking water.

0 98930 58881 **Osmotic Pressure** (π) . The hydrostatic pressure built up on the solution which just stops osmosis. Alternately, it may be defined as the pressure which must be applied to the concentrated solution in order to stop osmosis.

 $\pi = cRT = h\rho g$ For dilute solutions 000 where c is the total molar concentration of all the free species present in the solution, h is the height developed by the column of the concentrated solution and ρ is the density of the solution in the column. TEKO CLASSES, Director : SUHAG R. KARIYA (S. R. K. Sir) PH: (0755)- 32 00 On the basis of osmotic pressure, the solutions can be classified in three classes.

Hypertonic solution. When two solutions are being compared, then the solution with higher osmotic pressure is termed as hypertonic. The solution with lower osmotic pressure is termed as hypotonic.

Important. Osmotic pressures can be determined quite accurately, hence it is used in the determination of molecular weights of large proteins and similar substances.

Van't Hoff Factor (i)

Since colligative properties depends upon the number of particles of the solute, in some cases where the solute associates or dissociates in solution, abnormal results for molecules masses are obtained.

i = <u>Observed colligative property(actual)</u> <u>Theoretical colligative property</u>

3.

Isotonic solutions. Two solutions having same osmotic pressures at same temperature. (This implies $c_1 = c_2$).

Liquid Solutions Colligative properties (C.P.) 1. Vapour Pressure 1. Introduction 2. Raoult's law 2. The various C.P. (i) When volatile solute is added (i) Lowering of V.P. (a) When solute and solvent; both are miscible (a) Determination of molar masses (b) When both are immiscible (b) It's measurement (ii) When non-volatile solute is added. (ii) Boiling point elevation 3. Condensation of vapours of (iii) Depression in freezing point solution (iv) Osmotic pressure 4. Ideal and non-ideal solutions (a) Osmosis 5. Azeotropic mixtures (b) Reverse osmosis

(c) Isotonic solution

3.Van't Haff factor; Where the solute associates or dissociates in solution.

Raoult's law

- Q.2
- Q.3 The vapour pressure of pure water at 26°C is 25.21 torr. What is the vapour pressure of a solution which contains 20.0 glucose, $C_6H_{12}O_6$, in 70 g water?
- BHOPAL The vapour pressure of pure water at 25°C is 23.76 torr. The vapour pressure of a solution containing Q.4 5.40 g of a nonvolatile substance in 90.0 g water is 23.32 torr. Compute the molecular weight of the

Raoult's law in combinaton with Dalton's law of P.P. and V.P. lowering

- www.tekoclasses.com *t's law in combinaton with Dalton's law of P.P. and V.P. lowering* The vapour pressure of ethanol and methanol are 44.5 mm and 88.7 mm Hg respectively. An ideal solution is prepared at the same temperature by mixing 60 g of ethanol with 40 g of methanol. Cut it total vapour pressure of the solution Q.5 000 total vapour pressure of the solution.
- **FREE Download Study Package from website:** Sir) PH: (0755)- 32 00 Q.6 Calculate the mole fraction of toluene in the vapour phase which is in equilibrium with a solution of benzene and toluene having a mole fraction of toluene 0.50. The vapour pressure of pure benzene is 119 torr; that of toluene is 37 torr at the same temperature.
 - What is the composition of the vapour which is in equilibrium at 30°C with a benzene-toluene solution Q.7 with a mole fraction of benzene of 0.40? With a mole fraction of benzene of 0.60?

¥

 $P_{b}^{\circ} = 119$ torr and $P_{t}^{\circ} = 37$ torr

- Ľ At 90°C, the vapour pressure of toluene is 400 torr and that of σ -xylene is 150 torr. What is the **i** Q.8 composition of the liquid mixture that boils at 90°C, when the pressure is 0.50 atm? What is the composition KARIYA of vapour produced?
- Two liquids A and B form an ideal solution at temperature T. When the total vapour pressure above the 🖬 Q.9 solution is 400 torr, the mole fraction of A in the vapour phase is 0.40 and in the liquid phase 0.75. What are the vapour pressure of pure A and pure B at temperature T?
- Q.10 Calculate the relative lowering in vapour pressure if 100 g of a nonvolatile solute (mol.wt.100) are dissolved in 432 g water.
- Q.11 What weight of the non-volatile solute, urea needs to be dissolved in 100 g of water, in order to decrease the vapour pressure of water by 25%? What will be the molality of the solution?
- **TEKO CLASSES, Director : SUHAG** O.12 The vapour pressure of an aqueous solution of glucose is 750 mm Hg at 373 K. Calculate molality and mole fraction of solute.

- Q.13
- The vapour pressure of pure benzene at 25° C is 639.7 mm of Hg and the vapour pressure of a solution of a solute in C₆H₆ at the same temperature is 631.7 mm of Hg. Calculate molality of solution. The vapour pressure of pure benzene at a certain temperature is 640 mm of Hg. A nonvolatile nonelectrolyte solid weighing 2.175 g is added to 39.0 of benzene. The vapour pressure of the solution is 600 mm of Hg. What is molecular weight of solid substance? The vapour pressure of water is 17.54 mm Hg at 293 K. Calculate vapour pressure of 0.5 molal solution of a solute in it. Q.14
- Q.15
- 0.16 Benzene and toluene form two ideal solution A and B at 313 K. Solution A (total pressure P_{A}) contains equal mole of toluene and benzene. Solution B contains equal masses of both (total pressure P_B). The vapour pressure of benzene and toluene are 160 and 60 mm Hg respectively at 313 K. Calculate the value of P_A/P_B .

Boiling point elevation and freezing point depression

- 58881 When 10.6 g of a nonvolatile substance is dissolved in 740 g of ether, its boiling point is raised 0.284°C. Q.17 What is the molecular weight of the substance? Molal boiling point constant for ether is 2.11° C·kg/mol. A solution containing 3.24 of a nonvolatile nonelectrolyte and 200 g of water boils at 100.130°C at
- www.tekoclasses.com Q.18 1atm. What is the molecular weight of the solute? (K_b for water 0.513°C/m) 000,

FREE Download Study Package from website: The molecular weight of an organic compound is 58.0 g/mol. Compute the boiling point of a solution 8 Q.19 containing 24.0 g of the solute and 600 g of water, when the barometric pressure is such that pure water S boils at 99.725°C. K. Sir) PH: (0755)-

- Q.20 An aqueous solution of a nonvolatile solute boils at 100.17°C. At what temperature will this solution freeze? [K_f for water 1.86° C/m]
- Pure benzene freeze at 5.45°C. A solution containing 7.24 g of $C_2H_2Cl_4$ in 115.3 g of benzene was Q.21 observed to freeze at 3.55°C. What is the molal freezing point constant of benzene? Ľ
- A solution containing 6.35 g of a nonelectrolyte dissolved in 500 g of water freezes at -0.465 °C. Q.22 Determine the molecular weight of the solute.
- R. KARIYA (S. The freezing point of a solution containing 2.40 g of a compound in 60.0 g of benzene is 0.10°C lower Q.23 than that of pure benzene. What is the molecular weight of the compound? ($K_f ext{ is 5.12}^{\circ}C/m$ for benzene)
- **TEKO CLASSES, Director : SUHAG** Q.24 The elements X and Y form compounds having molecular formula XY₂ and XY₄. When dissolved in 20 gm of benzene, 1 gm XY₂ lowers the freezing point by 2.3° , whereas 1 gm of XY₄ lowers the freezing point by 1.3°C. The molal depression constant for benzene is 5.1. Calculate the atomic masses of X and Y.
- Calculate the molal elevation constant, K_b for water and the boiling of 0.1 molal urea solution. Latent Q.25 heat of vaporisation of water is 9.72 kcal mol⁻¹ at 373.15 K.
- Calculate the amount of ice that will separate out of cooling a solution containing 50g of ethylene glycol Q.26 in 200 g water to -9.3 °C. (K_f for water = 1.86 K mol⁻¹ kg)

- Q.27
- A solution of 0.643 g of an organic compound in 50ml of benzene (density ; 0.879 g/ml) lowers its freezing point from 5.51°C to 5.03°C. If K_f for benzene is 5.12 K, calculate the molecular weight of the compound. The cryoscopic constant for acetic acid is 3.6 K kg/mol. A solution of 1 g of a hydrocarbon in 100 g of acetic acid freezes at 16.14°C instead of the usual 16.60°C. The hydrocarbon contains 92.3% carbon. What is the molecular formula? Q.28

Osmotic pressure

- Find the freezing point of a glucose solution whose osmotic pressure at 25°C is found to be 30 atm. O.29 $K_{f}(water) = 1.86 kg.mol^{-1}.K.$
- At 300 K, two solutions of glucose in water of concentration 0.01 M and 0.001 M are separated by semipermeable membrane. Pressure needs to be applied on which solution, to prevent osmosis? Calculate O.30 the magnitude of this applied pressure.
- At 10°C, the osmotic pressure of urea solution is 500 mm. The solution is diluted and the temperature Q.31 is raised to 25°C, when the osmotic pressure is found to be 105.3 mm. Determine extent of dilution. The osmotic pressure of blood is 7.65 atm at 37°C. How much glucose should be used per L for an o
- Q.32 intravenous injection that is to have the same osmotic pressure as blood? 000,
- Q.33
- What would be the osmotic pressure at 17° C of an aqueous solution containing 1.75 g of sucrose $(C_{12}H_{22}O_{11})$ per 150 cm³ of solution? A 250 mL water solution containing 48.0 g of sucrose, $C_{12}H_{22}O_{11}$, at 300 K is separated from pure water by means of a semipermeable membrane. What pressure must be applied above the solution in order to just prevent osmosis? O.34
- FREE Download Study Package from website: www.tekoclasses.com Sir) Q.35 A solution of crab hemocyanin, a pigmented protein extracted from crabs, was prepared by dissolving 0.750 g in 125 cm³ of an aqueous medium. At 4°C an osmotic pressure rise of 2.6 mm of the solution ż was observed. The solution had a density of 1.00 g/cm³. Determine the molecular weight of the protein. ທ່
 - KARIYA Q.36 The osmotic pressure of a solution of a synthetic polyisobutylene in benzene was determined at 25°C. A sample containing 0.20 g of solute/100 cm³ of solution developed a rise of 2.4 mm at osmotic equilibrium. The density of the solution was 0.88 g/cm^3 . What is the molecular weight of the polyisobutylene? ż
 - 0.37 A 5% solution (w/v) of cane-sugar (Mol. weight = 342) is isotonic with 0.877% (w/v) of urea solution. Find molecular weight of urea.
 - **TEKO CLASSES, Director : SUHAG** Q.38 10 gm of solute A and 20 gm of solute B are both dissolved in 500 ml water. The solution has the same osmotic pressure as 6.67 gm of A and 30 gm of B dissolved in the same amount of water at the same temperature. What is the ratio of molar masses of A and B?

Van't Hoff factor & colligative properties

A storage battery contains a solution of H_2SO_4 38% by weight. What will be the Van't Hoff factor if the Q.39 $\Delta T_{\text{f(experiment)}}$ in 29.08. [Given $K_{\text{f}} = 1.86 \text{ mol}^{-1} \text{ Kg}$]

- A certain mass of a substance, when dissolved in 100 g C₆H₆, lowers the freezing point by 1.28°C. The same mass of solute dissolved in 100g water lowers the freezing point by 1.40°C. If the substance has normal molecular weight in benzene and is completely ionized in water, into how many ions does it dissociate in water? K_f for H₂O and C₆H₆ are 1.86 and 5.12K kg mol⁻¹. 2.0 g of benzoic acid dissolved in 25.0g of benzene shows a depression in freezing point equal to 1.62K. Molal depression constant (K_f) of benzene is 4.9 K.kg.mol⁻¹. What is the percentage association of the acid? A decimolar solution of potassium ferrocyanide is 50% dissociated at 300K. Calculate the osmotic pressure of the solution. (R=8.314 JK⁻¹ mol⁻¹) Q.40
- Q.41
- Q.42
- The freezing point of a solution containing 0.2 g of acetic acid in 20.0g of benzene is lowered by 0.45°C. Q.43 Calculate the degree of association of acetic acid in benzene. (K_f for benzene = 5.12 K mol⁻¹ kg)
- Calculate the degree of association of acetic acid in benzene. (K_f for benzene = 5.12 K mol⁻¹ kg) 0.85 % aqueous solution of NaNO₃ is apparently 90% dissociated at 27°C. Calculate its osmotic 0.85 % aqueous solution of NaNO, is apparently 90% dissociated at 27°C. Calculate its osmotic pressure. (R= 0.082 / atm K⁻¹ mol⁻¹) A 1.2% solution (w/v) of NaCl is isotonic with 7.2% solution (w/v) of glucose. Calculate degree of inization and Van't Hoff factor of NaCl. Q.44
- Q.45

PROFICIENCY TEST

		<u>PROFICIENCY TEST</u>	SNO
	Q.1	Fill in the blanks with appropriate items :	
	1.	Lowering of vapour pressure is to the mole fraction of the solute.	SOL
	2.	PROFICIENCY TEST Fill in the blanks with appropriate items : Lowering of vapour pressure is to the mole fraction of the solute. The ratio of the value of any colligative property for NaCl solution to that of equimolal solution of sugar is nearly Semipermeable membrane allows the passage ofthrough it. A binary solution which has same composition in liquid as well as vapour phase is called The molal elevation constant of solvent is also called	Inolin
	3.	Semipermeable membrane allows the passage ofthrough it.	f 20 I
	4.	A binary solution which has same composition in liquid as well as vapour phase is called	e 10 o
	5.	The molal elevation constant of solvent is also called	Pag
	6.	The 0.1 M aqueous solution of acetic acid has boiling point than that of 0.1 M aqueous solution of KCl.	
	7.	For ideal solutions, the plot of total vapour pressure v/s composition is	BHOPAL
om	8.	A solution of CHCl ₃ and acetone shows deviation.	BH
es.c	9.	Gases which react with water are generally soluble in it.	81,
asse	10.	Assuming complete dissociation, Van't Hoff's factor for Na_2SO_4 is equal to	0 98930 58881
socl	11.	The osmotic pressure of a solution with increase in temperature.	930
v.tel	12.	Water will boil at 101.5°C at pressure of76 cm of Hg.	0 98
www.tekoclasses.com	13.	Vant's Hoff's factor 'i' for dimerisation of CH COOH in benzene is	
dy Package from website:	14.	$\pi = \frac{n_B}{V} RT$ is known as	PH: (0755)- 32 00 000,
	15.	The molal elevation constant is the ratio of the elevation in boiling point to	55)-
	Q.2	True or False Statements :	20)
ie fr	16.		
kag	17.	Lowering of vapour pressure of a solution is equal to the mole fraction of the non-volatile solute present in it.	Sir)
Pac	18.	The components of an azeotropic solution can be separated by simple distillation.	X.
		Vapour pressure of a liquid depends on the size of the vessel.	S.R
Stu	20.	Addition of non-volatile solute to water always lowers it vapour pressure.	XA (
oad	21.	Reverse osmosis is generally used to make saline water fit for domestic use.	(ARI
wnl	22.	A 6% solution of NaCl should be isotonic with 6% solution of sucrose.	Ч, Х
Do	23.	A real solution obeys Raoult's law.	1AG
FREE Download Stu	24.	Addition of non-volatile solute to water always lowers it vapour pressure. Reverse osmosis is generally used to make saline water fit for domestic use. A 6% solution of NaCl should be isotonic with 6% solution of sucrose. A real solution obeys Raoult's law. Boiling point is a characteristic temperature at which vapour pressure of the liquid becomes higher than the atmospheric pressure.	r : SUF
H	25.	Molal depression constant is independent of the nature of solute as well as that of solvent.	scto
	26.	The real solutions can exhibit ideal behaviour at high concentrations.	EKO CLASSES, Director :
	27.	The osmotic pressure decreases on addition of solvent to the solution.	ES,
	28.	For urea the value of Vant's Hoff's factor 'i' is equal to 1.	ASS
	29.	The unit of k_b is kg K^{-1} mol ⁻¹ .	2 CL
	30.	0.1 M solution of urea would be hypotonic with 0.1 M solution of NaCl.	EKC

EXERCISE II

- Page 11 of 20 LIQUID SOLUTIONS An aqueous solution containing 288 gm of a non-volatile compound having the stoichiometric composition (0755)-32 00 000, 0 98930 58881, BHOPAL Ś KARIYA ż SUHAG
- Q.9 The latent heat of fusion of ice is 80 calories per gram at 0° C. What is the freezing point of a solution of KCl in water containing 7.45 grams of solute in 500 grams of water, assuming that the salt is dissociated to the extent of 95%?
- TEKO CLASSES A complex is represented as $CoCl_3 \cdot x NH_3$. It's 0.1 molal solution in aq. solution shows $\Delta T_f = 0.558^{\circ}C$. Q.10 K, for H₂O is 1.86 K mol⁻¹kg. Assuming 100% ionisation of complex and coordination no. of Co is six, calculate formula of complex.

 $C_x H_{2x} O_x$ in 90 gm water boils at 101.24°C at 1.00 atmospheric pressure. What is the molecular formula? $K_{h}(H_{2}O) = 0.512 \text{ K mol}^{-1} \text{ kg}$ $T_{h}(H_{2}O) = 100^{\circ}C$

Q.2 The degree of dissociation of $Ca(NO_3)_2$ in a dilute aqueous solution containing 7 gm of the salt per 100 gm of water at 100°C is 70%. If the vapour pressure of water at 100°C is 760 mm. Calculate the vapour pressure of the solution.

- Q.3 The addition of 3 gm of substance to 100 gm CCl_4 (M = 154 gm mol⁻¹) raises the boiling point of CCl_4 by 0.60°C of K_{h} (CCl₄) is 5.03 kg mol⁻¹ K. Calculate
- the freezing point depression (a)

Q.1

- (b) the relative lowering of vapour pressure
- (c) the osmotic pressure at 298 K
- (d) the molar mass of the substance

Given $K_f(CCl_4) = 31.8 \text{ kg mol}^{-1} \text{K}$ and ρ (density) of solution = 1.64 gm/cm³

- FREE Download Study Package from website: www.tekoclasses.com A 10% solution of cane sugar has undergone partial inversion according to the reaction: Q.4 Sucrose + Water \longrightarrow Glucose + Fructose. If the boiling point of solution is 100.27 °C. What is the average mass of the dissolved materials? (a)
 - $K_{\rm b}({\rm H_2O}) = 0.512 \text{ K mol}^{-1} \text{ kg}$ (b) What fraction of the sugar has inverted?
 - If 20 ml of ethanol (density = 0.7893 gm/ml) is mixed with 40 ml water (density = 0.9971 gms) at 25°C O.5 the final solution has density of 0.9571 gm/ml. Calculate the percentage change in total volume of mixing. Also calculate the molality of alcohol in the final solution.
 - Mixture of two liquids A and B is placed in cylinder containing piston. Piston is pulled out isothermally so Q.6 that volume of liquid decreases but that of vapour increases. When negligibly small amount of liquid was remaining, the mole fraction of A in vapour is 0.4. Given $P_A^{\circ} = 0.4$ atm and $P_B^{\circ} = 1.2$ atm at the experimental temperature. Calculate the total pressure at which the liquid has almost evaporated. (Assume ideal d behaviour).
 - 1.5 g of a monobasic acid when dissolved in 150g of water lowers the freezing point by 0.165°C. 0.5 g Q.7 of the same acid when titrated, after dissolution in water, requires 37.5 ml of N/10 alkali. Calculate the degree of dissociation of the acid (K_r for water = 1.86°C mol⁻¹).
 - Q.8 Sea water is found to contain 5.85% NaCl and 9.50% MgCl, by weight of solution. Calculate its normal boiling point assuming 80% ionisation for NaCl and 50% ionisation of MgCl₂ [K₁(H₂O) = 0.51 kgmol⁻¹K].

- Q.11
- The molar volume of liquid benzene (density = 0.877 g m^{-1}) increases by a factor of 2750 as it vaporizes at 20°C and that of liquid toluene (density = 0.867 gm^{-1}) increases by a factor of 7720 at 20°C has a vapour pressure of 46.0 torr. Find the mole fraction of benzene in the vapour above the solution. At 100°C, benzene & toluene have vapour pressure of 1375 & 558 Torr respectively. Assuming these two form an ideal binary solution, calculate the composition of the solution that boils at 1 atm & 100°C. What is the composition of vapour issuing at these conditions? Calculate the boiling point of a solution containing 0.61g of benzoic acid in 50g of carbon disulphide assuming 84% dimerization of the acid. The boiling point and K_b of CS₂ are 46.2°C and 2.3 K kg mol⁻¹, respectively. Q.12
- 0.13 2.3 K kg mol⁻¹, respectively.
- At 25°C, 1 mol of A having a vapor pressure of 100torr and 1 mol of B having a vapor pressure of Q.14 300 torr were mixed. The vapor at equilibrium is removed, condensed and the condensate is heated back to 25°C. The vapors now formed are again removed, recondensed and analyzed. What is the mole fraction of A in this condensate?
- 0 98930 58881 Phenol associates in benzene to a certain extent to form a dimer. A solution containing 20×10^{-3} kg Q.15 phenol in 1 kg of benzene has its freezing point depressed by 0.69 K. Calculate the fraction of phenol that has dimerised. K_{e} for benzene = 5.12 kg mol⁻¹K.
- FREE Download Study Package from website: www.tekoclasses.com $30 \text{ ml of CH}_{2}\text{OH}$ (d = 0.7980 gm cm⁻³) and 70 ml of H₂O (d=0.9984 gm cm⁻³) are mixed at 25°C to Q.16 30 ml of CH₃OH (d = 0.7980 gm cm⁻³) and 70 ml of H₂O (d=0.9984 gm cm⁻³) are mixed at 25°C to form a solution of density 0.9575 gm cm⁻³. Calculate the freezing point of the solution. $K_f(H_2O)$ is 32 00 1.86 kg mol⁻¹ K. Also calculate its molarity.
 - Q.17 Dry air was drawn thorugh bulbs containing a solution of 40 grams of urea in 300 grams of water, then Sir) PH: (0755)through bulbs containing pure water at the same temperature and finally through a tube in which pumice moistened with strong H₂SO₄ was kept. The water bulbs lost 0.0870 grams and the sulphuric acid tube gained 2.036 grams. Calculate the molecular weight of urea.
 - Vapour pressure of C_6H_6 and C_7H_8 mixture at 50°C is given by $P(mm Hg) = 180 X_B + 90$, where X_B Q.18 is the mole fraction of $C_{c}H_{c}$. A solution is prepared by mixing 936g benzene and 736g toluene and if the Ż vapours over this solution are removed and condensed into liquid and again brought to the temperature ທ່ of 50°C, what would be mole fraction of C_6H_6 in the vapour state?
 - R. KARIYA Q.19 When the mixture of two immicible liquids (water and nitrobenzene) boils at 372 K and the vapour pressure at this temperature are 97.7 kPa (H₂O) and 3.6 kPa (C₂H₅NO₂). Calculate the weight % of nitrobenzene in the vapour.
 - Q.20 The vapour pressure of a certain liquid is given by the equation:

CLASSES, Director : SUHAG $Log_{10}P = 3.54595 - \frac{313.7}{T} + 1.40655 log_{10} T$ where P is the vapour pressure in mm and T = Kelvin Temperature. Determine the molar latent heat of vaporisation as a function of temperature. Calculate the its value at 80 K.

A very dilute saturated solution of a sparingly soluble salt A_3B_4 has a vapour pressure of 20 mm of Hg Q.21 at temperature T, while pure water exerts a pressure of 20.0126 mm Hg at the same temperature. TEKO Calculate the solubility product constant of A_3B_4 at the same temperature.

The molar volume of liquid benzene (density = 0.877g ml⁻¹) increases by a factor of 2750 as it vaporises Q.22 The motar volume of liquid benzene (density = $0.8 / /g \text{ m}^{-1}$) increases by a factor of 2750 as it vaporises **SOUTO** at 20°C while in equilibrium with liquid benzene. At 27°C when a non-volatile solute (that does not dissociate) is dissolved in 54.6 cm³ of benzene vapour pressure of this solution, is found to be 98.88 mm Hg.Calculate the freezing point of the solution. Given : Enthalpy of vaporization of benzene(1) = 394.57 J/gm Molal depression constant for benzene = $5.0 \text{ K kg. mol}^{-1}$. Freezing point of benzene = 278.5 K. If the apparent degree of ionization of KCl (KCl =74.5 gm mol⁻¹) in water at 290 K is 0.86. Calculate the mass of KCl which must be made up to 1 dm³ of aqueous solution to the same osmotic pressure as the 4.0% solution of glucose at that temperature.

- O.23 the 4.0% solution of glucose at that temperature.
- Q.24 An ideal solution was prepared by dissolving some amount of cane sugar (non-volatile) in 0.9 moles of water. The solution was then cooled just below its freezing temperature (271 K), where some ice get separated out. The remaining aqueous solution registered a vapour pressure of 700 torr at 373 K. Calculate the mass of ice separated out, if the molar heat of fusion of water is 6 kJ.
- The freezing point depression of a 0.109 M aq. solution of formic acid is -0.21°C. Calculate the Q.25 0 98930 equilibrium constant for the reaction,

HCOOH (aq) $1 H^+(aq) + HCOOH^-(aq)$ K_f for water = 1.86 kg mol⁻¹ K

- 000, $10 \text{ gm of NH}_4\text{Cl}$ (mol. weight = 53.5) when dissolved in 1000 gm of water lowered the freezing point by Q.26 0.637°C. Calculate the degree of hydrolysis of the salt if its degree of dissociation of 0.75. The molal depression constant of water is 1.86 kg mol⁻¹ K. Sir) PH: (0755)- 32
- The freezing point of 0.02 mol fraction solution of acetic acid (A) in benzene (B) is 277.4K. Acetic acid Q.27 exists partly as a dimer 2A = A2. Calculate equilibrium constant for the dimerisation. Freezing point of benzene is 278.4 K and its heat of fusion ΔH_c is 10.042 kJ mol⁻¹.
- A saturated solution of a sparingly soluble salt, MCl, has a vapour pressure of 31.78 mm of Hg at 30°C. Q.28 ż while pure water exerts a pressure of 31.82 mm of Hg at the same temperature. Calculate the solubility ż product of the compound at this temperature.
- FREE Download Study Package from website: www.tekoclasses.com Q.29 The vapour pressure of two pure liquids, A and B that form an ideal solution are 300 and 800 torr respectively, at temperature T. A mixture of the vapour of A and B for which the mole fraction of A is 0.25 is slowly compressed at temperature T. Calculate
 - (a) the composition of the first drop of the condensate,
 - (b) the total pressure when this drop is formed,
 - the composition of the solution whose normal boiling point is T, (c)
 - (d) the pressure when only the last bubble of vapour remains, and
 - (e) the composition of the last bubble.
 - TEKO CLASSES, Director : SUHAG R. KARIYA (S. O.30 Tritium, T (an isotope of H) combines with fluorine to form weak acid TF, which ionizes to give T⁺ Tritium is radioactive and is a β -emitter. A freshly prepared aqueous solution of TF has pT (equivalent of pH) of 1.5 and freezes at -0.372°C. If 600ml of freshly prepared solution were allowed to stand for 24.8 years. Calculate (i) ionization constant of TF. (ii) Number of β -particles emitted. (Given K_f for water = 1.86 kg mol K^{-1} , $t_{1/2}$ for tritium = 12.4 years)

EXERCISE III

Q.1

Q.2

Q.3

Q.4

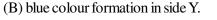
Q.5

Q.6

Q.7

Q.8

Q.9


Q.10

Q.11

FREE Download Study Package from website: www.tekoclasses.com

For an ideal binary liquid solution with $P_A^\circ > P_B^\circ$, which relation between X_A (mole fraction of A in liquid phase) and Y_A (mole fraction of A in vapour phase) is correct? (A) $Y_A < Y_B$ (B) $X_A > X_B$ (C) $\frac{Y_A}{Y_B} > \frac{X_A}{X_B}$ (D) $\frac{Y_A}{Y_B} < \frac{X_A}{X_B}$ Mole fraction of A vapours above the solution in mixture of A and B ($X_A = 0.4$) will be [Given : $P_A^\circ = 100 \text{ mm Hg}$ and $P_B^\circ = 200 \text{ mm Hg}$] (A) 0.4 (B) 0.8 (C) 0.25 (D) none of these						
(A) 0.4 The exact mathematic:	(B) 0.8 al expression of Raoult's	(C) 0.25 slaw is	(D) none of these			
<u>_</u>	•	(C) $\frac{P^0 - P_s}{P_s} = \frac{n}{N}$	(D) $\frac{P^0 - P_s}{P^0} = n \times N$, BHOPAL		
B ($P_B^{\circ} = 80 \text{ mm Hg}$). If (A) 85 mm Hg Which of the following (A) 1 M NaCl	f solution behaves ideall (B) 85.88 mm Hg g aqueous solution will s (B) 1 M CaCl ₂	y, the total vapour press (C) 90 mm Hg how maximum vapour p (C) 1 M AlCl ₃	(D) 92 mm Hg	32 00 000, 0 98930 58881		
(A) zero The correct relations $CaCl_2$ (T ₂ K) having th	e same molar concentra	(C) 1.5 g points of very dilute tion is	(D) 2.0 e solution oif AlCl ₃ (T_1K) and	PH: (0755)- 32 0		
(A) $T_1 = T_2$ A 0.001 molal solution 100% ionization of the the complex (A) [MA ₈]	n of a complex $[MA_8]$ is e complex salt and K_f for	(C) $T_2 > T_1$ n water has the freezing or $H_2O = 1.86 \text{ km}^{-1}$, writ (C) $[MA_6]A_2$	point of -0.0054°C. Assuming	Sir)		
pressure of the solvent	t at the same temperatur	blatile electrolyte B in a re. If the molecular weig the solvent and solute ar (C) 0.2	solvent A is 95% of the vapour ht of the solvent is 0.3 times the (D) 4.0	KARIYA		
given by $P_{Total} = 120 - $			volatile components A and B is (D) 75, 45	Director : SUHAC		
 (A) Decimolar Al₂(SC (B) Decimolar BaCl₂ (C) Decimolar Na₂SC 	$(2)_{4})_{3}$		have highest boiling point?	TEKO CLASSES, Director : SUHAG R.		

	Q.12		raction of solute in solut		on-volatile solute was added to be mole fraction of the solvent if (D) 0.8	OLL
	Q.13	Elevation of boiling point (A) K _b	int of 1 molar aqueous g (B) 1.20 K _b	lucose solution (density (C) 1.02 K _b	= 1.2 g/ml) is (D) 0.98 K _b	0 LIQUID
	Q.14	What will be the molect of freezing point? (A) 111	ular weight of $CaCl_2$ dete (B) < 111	ermined in its aq. solution $(C) > 111$	experimentally from depression (D) data insufficient	Page 15 of 20 LIQUID SOLI
	Q.15			B is 60% ionised The	boiling point of the solution at 1	
	Q.15	atm is $(K_{b(H_2O)} = 0.5)$	-	123 15 00 /0 101115Cd. 1110	coming point of the solution at 1	AL
-		(A) 274.76 K	(B) 377 K	(C) 376.4 K	(D) 374.76 K	внора
www.tekoclasses.com	Q.16	Which of the following (A) Plot of P _{total} v/s 1/2	plots represents an idea X_B is linear ($X_B = mole$		hase).	98930 58881 , B
		(C) Plot of $\frac{1}{P_{total}}$ v/s Y (D) Plot of $\frac{1}{P_{total}}$ v/s Y		15		00 000, 0 98
website:	Q.17			ing 10 moles each of liqu	id A and B is gradually decreased	5)- 32
Package from website:		isothermally. If $P_A^o = 20$ converted into vapour. (A) 150 mm Hg	00 mm Hg and $P_B^{\circ} = 100$ (B) 166.5 mm Hg	0 mm Hg, find the press (C) 133 mm Hg	ure at which half of the liquid is (D) 141.4 mm Hg	Sir) PH: (075
Þ,	Q.18				found to be 0.108 torr. If vapour olubility product of salt AB (D) 10 ⁻⁵	(S. R
nload S	Q.19	Which of the following r of 1 mol of an ideal bina		hanges in thermodynami	c properties during the formation	КA
FREE Download Stud		(A) $J mor^{-1} 0$ - ΔG_{mix} - ΔH_{mix} mole fraction	(B) $J \text{ mol}^{-1} = \begin{pmatrix} \Delta G_{\text{mix}} \\ \Delta H_{\text{mix}} \\ - & \Delta H_{\text{mix}} \\ T\Delta S_{\text{mix}} \\ \text{mole fraction} \end{pmatrix}$	(C) $J \text{ mol}^{-1} 0$ on (C) $J \text{ mol}^{-1} 0$	(D) $J \mod^{-1} 0$	Director : SUHAG R.
	Q.20	colour. These are sepa shown. Due to osmosis (A) blue colour formati (B) blue colour formati	ion in side X. on in side Y. ion in both of the sides 2	able membrane AB as	$\begin{array}{c c} 0.1 \text{ M} & 0.01 \text{ M} \\ K_4 \text{Fe}(\text{CN})_6 & \text{Fe}\text{Cl}_3 \\ \hline & & & \\ \hline \hline & & \\ \hline \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline \\$	TEKO CLASSES, Dired

- (C) blue colour formation in both of the sides X and Y.
- (D) no blue colour formation.

EXERCISE IV

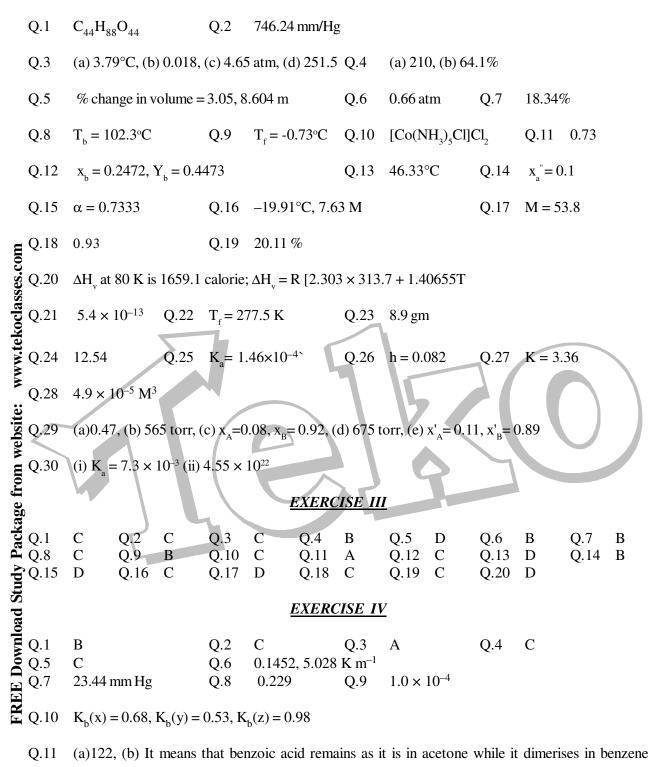
			EXER	<u>CISE IV</u>			SNOI
	OBJE	CTIVE					OLUT
	Q.1	The van't Hoff factor t (A) 91.3%	for 0.1 M Ba(NO ₃) ₂ sol (B) 87%	ution is 2.74. The degree (C) 100%	e of dissociation (D) 74%	is [JEE 1999]	Sanguns
	Q.2 (I) (II) (III) (IV)	The vapour pressure o The vapour pressure o Only solute molecules	eezing point experiment, of the solution is less that f the solution is more the solidify at the freezing po s solidify at the freezing p	n that of pure solvent. an that of pure solvent. oint.			Page 16 of 20 LIQUID SOLUTIONS
	(1)	(A) I, II	(B) II, III	(C) I, IV	(D) I, II, III	[JEE 1999]	BHOPAL
sses.com	Q.3	During depression of fi (A) liquid solvent-solid (C) liquid solute-solid	l solvent	n, the following are in eq (B) liquid solvent-solid (D) liquid solute-solid	solute	[JEE 2003]	58881, BH
Package from website: www.tekoclasses.com	Q.4		Na_2SO_4 is isotonic with sociation of Na_2SO_4 is (B) 50%	a 0.010 M solution of gl (C) 75%	ucose at same ter	mperature. The	-
	Q.5	The elevation in boilin water, is [Some useful (A) 0.05 ECTIVE A very small amount of (density 0.889 g cm ⁻³ that of benzene is 100	ing point, when 13.44 g of l data, $K_b (H_2O) = 0.52$ (B) 0.1 f a nonvolatile solute (that b), At room temperature 0 mm Hg. Find the mola	of freshly prepared CuC kg K mol ⁻¹ , mol. wt. of (C) 0.16 at does not dissociate) is o , vapour pressure of this dity of this solution. If th	l_2 are added to o $CuCl_2 = 134.4$ (D) 0.21 dissolved in 56.8 solution is 98.85 he freezing temp	one kilogram of gm] [JEE 2005] cm ³ of benzene 8 mm Hg while perature of this	sir) PH: (0755)- 32 00 000,
		solution is 0.73 degree constant of benzene?	e lower than that of benze	ene. What is the value of	molal freezing p	oint depression [JEE 1997]	. R. .
FREE Download Study	Q.7			eezes at –0.30°C. The v egree/molal. Calculate th			KARIY
	Q.8		6	is added. If 23% of acet ensity of water are 1.86			SUH/
Ţ	Q.9	flask 10 mole of (A) polymerising into a cor minute, 0.525 mole of a pressure of the solution	is mixed with 12 mole npletely insoluble solid. ⁷ a solute is dissolved whic on is 400 mm of Hg. Est	A) and (B) are 300 and 5 of (B). However, as so The polymerisation follow ch arrests the polymerisat timate the rate constant d polymerisation and idea	oon as (B) is ad ws first-order kin ion completely. T of the polymeris	ded, (A) starts etics. After 100 The final vapour action reaction.	LASSES, Dire

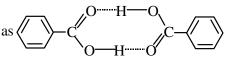
Match the boiling point with K_b for x, y and z, if molecular weight of x, y and z are same.[JEE 2003] Q.10

	b.pt.	K _b
Х	100	0.68
у	27	0.53
Z	253	0.98

- Page 17 of 20 LIQUID SOLUTIONS 1.22 g of benzoic acid is dissolved in (i) 100 g acetone (K_b for acetone = 1.7) and (ii)100 g benzene (K_b for benzene = 2.6). The elevation in boiling points T_b is 0.17°C and 0.13°C respectively. Q.11 What are the molecular weights of benzoic acid in both the solutions? (a)
- (b) What do you deduce out of it in terms of structure of benzoic acid?
- 72.5 g of phenol is dissolved in 1 kg of a solvent ($k_f = 14$) which leads to dimerization of phenol and Q.12 freezing point is lowered by 7 kelvin. What percent of total phenol is present in dimeric form? TEKO CLASSES, Director : SUHAG R. KARIYA (S. R. K. Sir) PH: (0755)- 32 00 000, 0 98930 58881 , BHOPAL

[JEE 2004]




ANSWER

EXERCISE I

	Q.1	0.24	Q.2	0.25	Q.3	24.5 torr	Q.4	57.24 g/mol
	Q.5	66.13 mm Hg	Q.6	0.237	Q.7	0.682, 0.318;	0.829, 0	.171
	Q.8	92 mol% toluene; 96.8	mol%t	oluene	Q.9	$P_{\rm A}^{\circ} = 213.33$ to	orr, P _B °=	: 960.0 torr
	Q.10	0.04	Q.11	111.1g, 18.521	nolal		Q.12	0.741 m, 0.013
	Q.13	0.162 m	Q.14	65.25	Q.15	17.38	Q.16	0.964
com	Q.17	106 g/mol	Q.18	64.0 g/mol	Q.19	100.079°C	Q.20	– 0.62°C
ISSes.(Q.21	5.08°C/m	Q.22	50.8 g/mol	Q.23	2050 g/mol	Q.24	x = 25.6, y = 42.6
ekocla	Q.25	$K_b = 0.512 \text{ kg mol } \text{K}^{-1}$	$T_{b} = 3$	73.20 K	Q.26	38.71 g	Q.27	156.06
www.tekoclasses.com	Q.28	C ₆ H ₆	Q.29	$T_{f} = -2.28^{\circ}C$	Q.30	P = 0.2217 atn	ı should	be applied
	0.31	$(V_{final} = 5.V_{original})$	Q.32	54.2 g	Q.33	0.81 atm	Q.34	13.8 atm
vebsit	Q.35	5.4×10^5 g/mol	Q.36	2.4×10^{5} g/mc	91		Q.37	59.99
A mo.	Q.38	$M_{\rm A}/M_{\rm B} = 0.33$	Q.39	i=2.5	Q.40	3 ions	Q.41	$\alpha = 99.2\%$
age fi	Q.42	7.482 ×10 ⁵ Nm ⁻²	Q.43	94.5 %	Q.44	4.64 atm	Q.45	0.95; 1.95
Study Package from website:				<u>PROFICIE</u>	NCY T	<u>EST</u>		
Study	1. prop	ortional	2.2:1		3. solve	ent molecules	4. azeo	tropic mixture
oad	5. Ebul	llioscopic constant	6. lesse	er	7. strai	ght line with slop	pe≠0	
FREE Downl	8. nega	tive	9. more	2	10.3		11. inci	reases
REE]	12. gre	ater than	13. less	s than 1				
H	14. Var	n't Hoff's solution equati	ion		15. mo	lality	16.	Т
	17.	F	18.	F	19.	F	20.	Т
	21.	Т	22.	F	23.	F	24.	F
	25.	F	26.	F	27.	Т	28.	Т
	29.	F	30.	Т				

Q.12 35% phenol is present in dimeric form